


Build APIs You Won’t Hate
Everyone and their dog wants an API, so you should probably learn
how to build them.

Phil Sturgeon

This book is for sale at http://leanpub.com/build-apis-you-wont-hate

This version was published on 2013-12-30

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

©2013 Phil Sturgeon

http://leanpub.com/build-apis-you-wont-hate
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto


Tweet This Book!
Please help Phil Sturgeon by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought @philsturgeon’s book about APIs because he said if I didn’t he would hurt me:
http://bit.ly/apisyouwonthate

The suggested hashtag for this book is #apisyouwonthate.

Find out what other people are saying about the book by clicking on this link to search for this hashtag on
Twitter:

https://twitter.com/search?q=#apisyouwonthate

http://twitter.com
https://twitter.com/search?q=%23apisyouwonthate
https://twitter.com/search?q=%23apisyouwonthate


Also By Phil Sturgeon
Desenvolvendo APIs que você não odiará

PHP: The ”Right” Way

http://leanpub.com/u/philsturgeon
http://leanpub.com/desenvolvendo-apis
http://leanpub.com/phptherightway


Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1 Useful Database Seeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction to Database Seeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Building Seeders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 That’s about it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Secondary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 When to run this . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Planning and Creating Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Endpoint Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Planning Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Input and Output Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Supporting Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Content Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Status Codes, Errors and Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 HTTP Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Error Codes and Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Common Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Endpoint Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1 Concepts & Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Initialise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6 Prepping Behat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.7 Running Behat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Outputting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



CONTENTS

6.1 The Direct Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Transformations with Fractal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Hiding Schema Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4 Outputting Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.5 Testing this Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.6 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Data Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.1 Sub-Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 Foreign Key Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3 Compound Documents (a.k.a Side-Loading) . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.4 Embedded Documents (a.k.a Nesting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.1 Coming Soon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



Introduction
I’ve been building APIs for a long time now and it is becoming ever more common for server-side developer
thanks to the rise of front-end JavaScript frameworks, iPhone applications and API-centric architectures. On
one hand you’re just grabbing stuff from a data source and shoving it out as JSON, but surviving changes in
business logic, database schema updates, new features or deprecated endpoints, etc gets super difficult.

I found most resources out there to be horribly lacking or specifically aimed at one single framework. Many
tutorials and books use apples and pears examples which are not concrete enough, or talk like listing /users
and /users/1 are the only endpoints you’ll ever need. I’ve spent the last year working at a company called
Kapture where my primary function has been to inherit, rebuild, maintain and further develop a fairly large
API with many different endpoints exposing a lot of different use-cases.

The API in question was v2 when I joined the company and written in FuelPHP, utilizing a now deprecated
ORM which had been hacked to death by the original developer. Kapture was in the process of rebuilding it’s
iPhone application to implement new functionality, so I used this as an opertunity to delete that mess and
build v3 in Laravel 4, leveraging it’s simple (initially Symfony-based) Routing, Database Migrations, Schema,
Seeding, etc. Now we are doing the same for v4 but no rewrite was required this time, even though we have
some different functionality the v3 repo was forked to a new one for v4 and both are being actively developed
and living side-by-side on the same “API” servers.

By passing on some best practices and general good advice you can hit the ground running if you
are new to API development. On the flip side, by recounting some horror stories (and how they were
overcome/avoided/averted) you can hopefully avoid a lot of the pitfalls I either fell into, or nearly fell into,
or saw others fall into. This book will discuss the theory of designing and building APIs in any language or
framework with this theory applied in examples built in PHP. I’m going to try and avoid making it code-heavy
to stop you falling asleep and to keep the non-PHP developers happy.

Some of the more advanced topics covered here are endpoint testing, embedding data objects in a consistent
and scalable maner, paginating responses (including embedded objects) and HATEOAS links.



Sample Code
Throughout this book I will refer to source code which exists on a GitHub repo, which can be downloaded in
a few ways. You can clone it:

1 git clone git@github.com:philsturgeon/build-apis-you-wont-hate.git

Browse around it:

1 https://github.com/philsturgeon/build-apis-you-wont-hate

Download it as a .zip file:

1 http://bit.ly/apisyouwonthate-zip

This contains a few bits and bobs that will save you having to copy and paste things out of the ebook, which
would probably be horrendous.



1 Useful Database Seeding
The first step to creating any sort of application is creating the database. Whether you are using some sort of
relational platform, MongoDB, Riak, or whatever, you’ll need a vague idea of how your data is going to be
stored.

For relational databases it is very likely you will start off your planning with an entity-relationship diagram
and for document based databases such as MongoDB, CouchDB or ElasticSearch you will just let your
application magically build a schema, but either way you need to create a plan - even if it is on a napkin. This
book will assume a traditional relational database is storing your data but the principles are easily adapted
for NoSQL systems too.

This chapter assumes you’ve already got a database designed and built. I’ll skip the “planning a database”
section because it is incredibly boring, and there are plenty of other books on that. We’re going straight onto
the next step.

1.1 Introduction to Database Seeding

With a database schema designed and implemented it’s time to store some data, but hold off entering your
real data. It is far easier to use “dummy data” to test if the schema is appropriate for your API application as
you can ditch the database and try again without worrying about keeping your data.

The process of populating a database is known as “seeding”.

This data could be test users, content entries with a bunch of comments, fake locations available for check-in,
fake notifications to display in an iPhone app (one of each type) or credit-card payments at various stages of
processing - with some complete, some half done and some super-fraudulent looking ones.

The process of creating seeding scripts means you don’t need to waste time creating this manually over and
over again. Ultimately, the more processes you can automate during the development of your API, the more
time you’ve got to consider the intricacies of your applications which need much more consideration.

Dummy data is necessary for realistic acceptance testing, getting freelancers/new hires up to speed with useful
content, keeping real customer data private to those outside your company, and avoiding the temptation to
copy live data over to your development environments.

Why is using production data in development bad?

Have you ever been writing a script that sends out emails and used some dummy copy while you’re building
it? Ever used some cheekywords in that content? Ever accidentally sent that email out to 10,000 real customers
email addresses? Ever been fired for losing a company north of £200,000?

I haven’t, but I know a guy that has. Don’t be that guy.



Useful Database Seeding 2

What data should you use?

Garbage! Use absolute nonsense for your development database, but nonsense of the correct data type, size,
and format. That can be donewith a fun little library called Faker¹ by François Zaninotto² which is a wonderful
little library that can essentially bullshit for Queen and country.

1.2 Building Seeders

Kapture uses the Laravel framework which has the joys of having Database Seeding³ baked in. This is
essentially a tarted up task which almost any modern PHP framework will have (or bloody well should
do) so the principles are applicable to all.

Break your Database Seeders down into logical groupings. This doesn’t need to be “one seeder-per-table” but
it can be. The reason I don’t try to stick to that rule is that sometimes your data needs to be built at the same
time as other types of data, so for us Users are created in the same “seeder” as their settings, OAuth tokens,
and friendship data is made. Putting that stuff into multiple seeders purely to keep things tidy would be an
exercise in futility, and slow everything down for no reason.

So, this is a drastically simplified version of our user seeder all in one go, ignoring the Laravel specific structure.
If you’re using Laravel 4, just shove this in your run() method.

Creating a user with Faker and Eloquent ORM

1 $faker = Faker\Factory::create();

2

3 for ($i = 0; $i < Config::get('seeding.users'); $i++) {

4

5 $user = User::create([

6 'name' => $faker->name,

7 'email' => $faker->email,

8 'active' => $i === 0 ? true : rand(0, 1),

9 'gender' => rand(0, 1) ? 'male' : 'female',

10 'timezone' => mt_rand(-10, 10),

11 'birthday' => rand(0, 1) ? $faker->dateTimeBetween('-40 years', '-18 yea\

12 rs') : null,

13 'location' => rand(0, 1) ? "{$faker->city}, {$faker->state}" : null,

14 'had_feedback_email' => (bool) rand(0, 1),

15 'sync_name_bio' => (bool) rand(0, 1),

16 'bio' => $faker->sentence(100),

17 'picture_url' => $this->picture_url[rand(0, 19)],

18 ]);

19 }

¹
²https://twitter.com/francoisz/
³

https://twitter.com/francoisz/
https://twitter.com/francoisz/


Useful Database Seeding 3

So what do we have here? Let’s go through this section at a time:

1 $faker = Faker\Factory::create();

An instance of Faker, our bullshit artist for-hire.

1 for ($i = 0; $i < Config::get('seeding.users'); $i++) {

We’re going to want a certain number of users, but I’d recommend you have a few less on development than
you do on testing or staging, because time.

1 $user = User::create([

2 'name' => $faker->name,

3 'email' => $faker->email,

Make a random name and random email. We don’t have to define the pool of random data it uses, because
IT’S MAGIC!

1 'active' => $i === 0 ? true : rand(0, 1),

Ok I lied, our garbage is not 100% random. We want user number 1 to be active for tests later on.

1 'gender' => $faker->randomElement(['male', 'female']),

Gender equality is important.

1 'timezone' => mt_rand(-10, 10),

Our original developer decided that saving timezones as an integer was a clever thing to do. Bellend. How
you gonna handle countries with +4.45 timezones bro? I still need to refactor this, but it’s fine for now.

1 'birthday' => rand(0, 1) ? $faker->dateTimeBetween('-40 years', '-18 yea\

2 rs') : null,

Users of all of our target age demographic.

1 'location' => rand(0, 1) ? "{$faker->city}, {$faker->state}" : null,

Give us a city name and a state name. This works fine with foreign countries too which is cool.



Useful Database Seeding 4

1 'had_feedback_email' => $faker->boolean,

2 'sync_name_bio' => $faker->boolean,

Some user flags we don’t care much about. True or false, whatever.

1 'bio' => $faker->sentence(100),

Make a sentence with 100 characters in it.

1.3 That’s about it

You will end up making a lot of these files, and you’ll want to populate pretty much every table you have with
data. You’ll also want to tell your Database Seeder to wipe all the tables you’re going to populate. Do this
globally right at the start of the process, don’t wipe each table at the top of each seeder or you’ll be wiping
out content in that table from other seeders in the same process.

Example of an overall system in Laravel 4

1 class DatabaseSeeder extends Seeder

2 {

3 public function run()

4 {

5 if (App::environment() === 'production') {

6 exit('I just stopped you getting fired. Love Phil');

7 }

8

9 Eloquent::unguard();

10

11 $tables = [

12 'locations',

13 'merchants',

14 'opps',

15 'opps_locations',

16 'moments',

17 'rewards',

18 'users',

19 'oauth_sessions',

20 'notifications',

21 'favorites',

22 'settings',

23 'friendships',

24 'impressions',

25 ];



Useful Database Seeding 5

26

27 foreach ($tables as $table) {

28 DB::table($table)->truncate();

29 }

30

31 $this->call('MerchantTableSeeder');

32 $this->call('PlaceTableSeeder');

33 $this->call('UserTableSeeder');

34 $this->call('OppTableSeeder');

35 $this->call('MomentTableSeeder');

36 }

37 }

This wipes everything, then runs other seeder classes to do their thing.

1.4 Secondary Data

As I said it is quite likely that you will need to insert data that relates to each other. To do this you work out
which data will be primary (like users) and in the case of a check-in system probably “venues” or “merchants”
depending on the nomenclature of your system.

For this example I will show how to create merchants, then attach “opportunities”, which are essentially
“campaigns”.

Primary Seeder for the Merchant Table

1 <?php

2

3 class MerchantTableSeeder extends Seeder

4 {

5 /**

6 * Run the database seeds.

7 *

8 * @return void

9 */

10 public function run()

11 {

12 $faker = Faker\Factory::create();

13

14 // Create however many merchants

15 for ($i = 0; $i < Config::get('seeding.merchants'); $i++) {

16 Merchant::create([

17 'name' => $faker->company,

18 'website' => $faker->url,



Useful Database Seeding 6

19 'phone' => $faker->phoneNumber,

20 'description' => $faker->text(200),

21 ]);

22 }

23 }

24 }

Primary Seeder for the Opp Table

1 <?php

2

3 use Carbon\Carbon;

4 use Kapture\CategoryFinder;

5

6 class OppTableSeeder extends Seeder

7 {

8 /**

9 * Build it up

10 *

11 * @param Place

12 */

13 public function __construct(CategoryFinder $finder, Place $places)

14 {

15 $this->categoryFinder = $finder;

16 $this->places = $places;

17 }

18

19 /**

20 * Images.

21 *

22 * @var string

23 */

24 protected $imageArray = [

25 'http://example.com/images/example1.jpg',

26 'http://example.com/images/example2.jpg',

27 'http://example.com/images/example3.jpg',

28 'http://example.com/images/example4.jpg',

29 'http://example.com/images/example5.jpg',

30 ];

31

32 /**

33 * Run the database seeds.

34 *

35 * @return void



Useful Database Seeding 7

36 */

37 public function run()

38 {

39 $faker = Faker\Factory::create();

40

41 foreach (Merchant::all() as $merchant) {

42

43 // Create however many opps for this merchant

44 foreach (range(1, rand(2, 4)) as $i) {

45

46 // There are three types of image to add

47 $image = Image::create([

48 'name' => "{$merchant->name} Image #{$i}",

49 'url' => $faker->randomElement($this->imageArray),

50 ]);

51

52 // Start it immediately and make it last for 2 months

53 $starts = Carbon::now();

54

55 // We need to definitely have at least one we are in control of

56 if ($i === 1) {

57 // Have ONE that ends really soon

58 $ends = Carbon::now()->addDays(2);

59 $teaser = 'Something about cheese';

60

61 } else {

62 $ends = Carbon::now()->addDays(60);

63 $teaser = $faker->sentence(rand(3, 5));

64 }

65

66 $category = $this->categoryFinder->setRandom()->getOne();

67

68 $opp = Opp::create([

69 'name' => $faker->sentence(rand(3, 5)),

70 'teaser' => $teaser,

71 'details' => $faker->paragraph(3),

72 'starts' => $starts->format('Y-m-d H:i:s'),

73 'ends' => $ends->format('Y-m-d H:i:s'),

74 'category_id' => $category->id,

75 'merchant_id' => $merchant->id,

76 'published' => true,

77 ]);

78

79 // Attach the location to the opp

80 $opp->images()->attach($image, [



Useful Database Seeding 8

81 'published' => true

82 ]);

83 }

84

85 echo "Created $i Opps for $merchant->name \n";

86 }

87 }

88 }

This might look a little crazy and it is certainly a mixture of lazy-static ORM usage in the controller and some
dependency injection, but these seeders have not received a large amount of love. They definitely do their
job, and could always be cleaner, but the basics here are:

1 foreach (Merchant::all() as $merchant) {

Loop through all merchants.

1 // Create however many opps for this merchant

2 foreach (range(1, rand(2, 4)) as $i) {

Create between 1 and 4 opportunities for a merchant.

1 // There are three types of image to add

2 $image = Image::create([

3 'name' => "{$merchant->name} Image #{$i}",

4 'url' => $faker->randomElement($this->imageArray),

5 ]);

Add an image from our array of example images on S3 or our website somewhere. The more the merrier.

1 $category = $this->categoryFinder->setRandom()->getOne();

I will talk more about finders in a later chapter, but for now just know this is a convenient way of getting a
single random category back.

The rest should all be relatively obvious.

If you’re using Laravel 4 you can run the above commands on the command line with: $ php artisan db:seed.



Useful Database Seeding 9

1.5 When to run this

This is often run manually, and automatically depending on the instances.

For example, if you’ve just added a new endpoint with new data, you will want to let your team-mates know
to pull the latest code, run the migrations and run the db seed.

This is also great of course when a freelancer comes in to do some work, or a new developer starts up, or your
iPhone dev wants to get some data to use. In all these instances that command just needs to be run on the
command line.

This is also occasionally run manually on the staging server, and automatically on the Jenkins testing server
when we deploy new builds of the API.



2 Planning and Creating Endpoints
With your database planned and full of fake but useful data it is time to plan what your endpoints are going
to look like. The first step is to work out the requirements of an API, then we’ll move onto some theory and
finally see the theory implemented in some examples.

2.1 Functional Requirements

Try thinking of everything your API will need to handle. This will initially be a list of CRUD (Create, Read,
Update, Delete) endpoints for your resources, Talk to your mobile app developer, your JS frontend people, or
just talk to yourself if you are the only developer on the project.

Definitely talk to your customers or “the business” (they are the customers) and get them to help you think
of functionality too, but don’t expect them to know what an endpoint is.

When you have a relatively extensive list the next step is to make a simple list of “Actions”. This is very much
like planning a PHP class, you first write up pseudo-code referencing the classes and methods like they exist,
right? TDD? If not that is how you should do it, or Chris Hartjes will find you, and he will kill you.

So if I have a “Places” resource in mind, I need to list out with just bullet points what it will do:

Places
- Create
- Read
- Update
- Delete

That is fairly obvious. Who will be able to view these places and who will be able to create and edit them is
(for now) irrelevant in our planning stages, as this API will get much smarter with the ideas of user-context
and permissions at a later date. For now just list all the things that need to be done.

A paginate-able list of places is also a requirement, so get that down:

Places
- Create
- Read
- Update
- Delete
- List

The API will need to offer the ability to search places by location too, but that is not a brand new endpoint. If
the API was built with SOAP or XML-RPC you would create a getPlacesByLatAndLon method to hit in the
URL, but this isn’t SOAP - thankfully. The list method will handle that with a few parameters, so why not
shove them in as a note for later:



Planning and Creating Endpoints 11

Places
- Create
- Read
- Update
- Delete
- List (lat, lon, distance or box)

Adding a few parameters as a reminder at this stage is cool, but lets not worry about adding too much. For
example, create and update are complicated so adding every single field would be a mess.

Update is more than just updating the specific “places” fields in the places SQL table. Update can do all sorts
of cool stuff. If you need to “favorite” a place, just send is_favorite to that endpoint and you’ve favorited it.
More on that later, just remember that not every single action requires its own endpoint.

Places will also need to have an image uploaded via the API. In this example we are only going to accept one
image for a place and a new image overrides the old, so add “Image” to the list. Otherwise you’d add “Images”
to the list:

Places
- Create
- Read
- Update
- Delete
- List (lat, lon, distance or box)
- Image

A complete API “action plan” might look like this:

Categories
- Create
- List

Checkins
- Create
- Read
- Update
- Delete
- List
- Image

Opps
- Create
- Read
- Update
- Delete



Planning and Creating Endpoints 12

- List
- Image
- Checkins

Places
- Create
- Read
- Update
- Delete
- List (lat, lon, distance or box)
- Image

Users
- Create
- Read
- Update
- Delete
- List (active, suspended)
- Image
- Favorites
- Checkins
- Followers

That might not contain everything, but it seems like a fairly solid start to our API. It is certainly going to take
long enough to write all that so if somebody thinks of something else they can just make an issue.

Moving on.

2.2 Endpoint Theory

Turning this “Action Plan” into actual endpoints requires knowing a little theory on RESTful APIs and “best
practices” for naming conventions. There are no right answers here, but some approaches have fewer cons
than others. I will try to push you in the direction I have found to be most useful, and highlight the pros and
cons of each.

GET Resources

• GET /resources - Some paginated list of stuff, in some logical default order for that specific data.
• GET /resources/X - Just entity X. That can be an ID, hash, slug, username, etc as long as it unique to
one “resource”.

• GET /resources/X,Y,Z - The client wants multiple things, so give them multiple things.

It can be hard to pick between sub-resource URLs or embedded data. Embedded data can be rather difficult
to pull off so that will be saved for Chapter 7: Embedding Data. For now the answer is “just sub-resources”,
but eventually the answer will be “both”. This is how sub-resources look:



Planning and Creating Endpoints 13

• GET /places/X/checkins - Find all the checkins for a specific place.
• GET /users/X/checkins - Find all the checkins for a specific user.
• GET /users/X/checkins/Y - Find a specific checkin for a specific user.

The latter is questionable, and not something I have ever personally done. At that point I would prefer to
simply use /checkins/X.

Auto-Increment is the Devil
In these examples X and Y can be an auto-incrementing ID as many developers will assume. One
important factor with auto-incrementing ID’s is that anyone with access to your API will know
exactly how many resources you have, which might not be a statistic you want your competitors
to have.

Consumers could also write a script which hits /users/1, then /users/2 and /users/3, etc scraping
all data as it goes. Sure they could probably do that from the “list” endpoints anyway, but not all
resources should have a “get all” approach.

Instead a unique identifier is often a good idea. A universal unique identifier (UUID) seems like a
logical thing to do: ramsey\uuid for PHP¹, uuid for Ruby², uuid in Python 2.5+³.

DELETE Resources

Want to delete things? Easy:

• DELETE /places/X - Delete a single place.
• DELETE /places/X,Y,Z - Delete a bunch of places.
• DELETE /places - This is a potentially dangerous endpoint that could be skipped, as it should delete all
places.

• DELETE /places/X/image - Delete the image for a place, or:
• DELETE /places/X/images - If you chose to have multiple images this would remove all of them.

POST v PUT: FIGHT!

What about creating and updating? This is where it gets almost religious. There are lots of people who will
try to pair the HTTP POST or HTTP PUT verb to a specific CRUD action and always only ever do that one
action with that one verb. That sucks and is not productive or functionally scalable.

Generally speaking, PUT is used if you know the entire URL before hand and the action is idempotent.
Idempotent is a fancy word for “can do it over and over again without causing different results”.

For example, create could be a PUT if you are creating one image for a place. If you were to do this:

¹https://github.com/ramsey/uuid
²https://rubygems.org/gems/uuid
³http://docs.python.org/2/library/uuid.html

https://github.com/ramsey/uuid
https://rubygems.org/gems/uuid
http://docs.python.org/2/library/uuid.html
https://github.com/ramsey/uuid
https://rubygems.org/gems/uuid
http://docs.python.org/2/library/uuid.html


Planning and Creating Endpoints 14

PUT /places/1/image HTTP/1.1
Host: example.com
Content-Type: image/jpeg

That would be a perfect example of when to use a PUT because you already know the entire URL and you can
do it time and time again.

At Kapture we use a POST to /checkins to create the metadata for that new checkin, then that will return the
URL for us to PUT the image to. You could try checking in multiple times and it wouldn’t matter because none
of those processes would be complete, but POSTing multiple times is not idempotent because each checkin
is different. PUT is idempotent because you are uploading that image to the full URL and you can do it over
and over again if you like (because the upload failed and it has to try again).

So, if you have multiple images for places maybe you could POST /places/X/images and multiple attempts
would be different images. If you know you’re only going to have one image and a new attempt is an override
then PUT /places/X/image would be ideal.

Another example could be user settings:

• POST /me/settings - I would expect this to allow me to POST specific fields one at a time, not force
me to send the entire body of settings.

• PUT /me/settings - Send me ALL the settings.

It’s a tricky difference, but do not try and tie a HTTP Method to one CRUD action only.

Plural, Singular or Both?

Some developers decide to make all endpoints singular but I take issue with that. Given /user/1 and /user,
which user is that last one returning? Is it “me”? What about /place? It returns multiple? Meh.

I know it can be tempting to create /user/1 and /users because the two endpoints do different things,
right? I started off down this route (#pun) with my original planning, but in my experience this convention
grows badly. Sure it works with the example of “users”, but what about those fun English words that create
exceptions, like /opportunity/1 which becomes /opportunities. Gross.

I pick plural for everything as it is the most obvious:

• /places - “If I run a GET on that I will get a collection of places”
• /places/45 - “Pretty sure I am just talking about places 45”
• /places/45,28 - “Ahh, places 45 and 28, got it”

Another solid reason for using plural consistently is that it allows for consistently named sub-resources:

• /places

• /places/45

• /places/45/checkins

• /places/45/checkins/91

• /checkins/91

Consistency is key.



Planning and Creating Endpoints 15

2.3 Planning Endpoints

Controllers

You need to list events, venues, users and categories? Easy. One controller for each type of resource:

• CategoriesController
• EventsController
• UsersController
• VenuesController

Everything in REST is a resource, so each resource needs a controller.

Later on we will look at some things that are not resources. Sub-resources can sometimes just be a method, for
example profile and settings are a sub-resource of Users, so maybe they can go in the User controller. These
rules are flexible.

Routes

Try to avoid the temptation to screw around with magic routing conventions⁴, just make them manually. I
will keep going with the previous examples and show the process of turning the action plan into routes, using
Laravel 4 syntax because why not:

Action Endpoint Route

Create POST /users Route::post(‘users’, ‘UsersController@create’);
Read GET /users/X Route::get(‘users/{id}’, ‘UsersController@show’);
Update POST /users/X Route::post(‘users/{id}’, ‘UsersController@update’);
Delete DELETE /users/X Route::delete(‘users/{id}’, ‘UsersController@delete’);
List GET /users Route::get(‘users’, ‘UsersController@list’);
Image PUT /users/X/image Route::put(‘users/{id}/image’,

‘UsersController@uploadImage’);
Favorites GET /users/X/favorites Route::get(‘users/{id}/favorites’,

‘UsersController@favorites’);
Checkins GET /users/X/checkins Route::get(‘users/{user_id}/checkins’,

‘CheckinsController@index’);

There are a few things in here worth considering.

1. Create and Update are both POST. Not because PUT is evil, but because when we create a user in this
example we do not know what their URL would be because our URLs are auto-generated with their ID.
If we knew their username for example we could have PUT /users/philsturgeon but then it would
be hard to work out if we are accidentally making the same HTTP request a second time, or trying to
override an existing user.

2. Favorites go to the UserController, because favorites are only ever relevant to the user.

⁴http://philsturgeon.co.uk/blog/2013/07/beware-the-route-to-evil

http://philsturgeon.co.uk/blog/2013/07/beware-the-route-to-evil
http://philsturgeon.co.uk/blog/2013/07/beware-the-route-to-evil


Planning and Creating Endpoints 16

3. Checkins go to the CheckinController, because we might already have a checkin controller handling
/checkins and the logic is basically identical. We’ll know if there is a user_id param in the URL if our
router is nice enough to let us know, so we can use that to make it user specific if needs be.

Those last two are kinda complex, but are examples of things you can be thinking about at this point. You
don’t want to have multiple endpoints doing painfully similar things with copy and paste logic because A)
PHP Copy/Paste Detector⁵ will be angry, B) your iPhone developer will be mad that different endpoints are
acting differently - therefore confusing RestKit and C) it’s boring and ain’t nobody got time for that.

Methods

When you have listed all of the routes you will need for your application go and make them all in their
controllers. Make them all empty and have one of them return "Oh hai!"; and check the output. GET
/places for example should Oh hai! in the browser. You just wrote an API.

⁵https://github.com/sebastianbergmann/phpcpd

https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd


3 Input and Output Theory
Now that we have a good idea how endpoints work the next glass of theory to swallow down is input and
output. This is the easiest of all really as it’s just HTTP “requests” and “responses”, which is the same as AJAX
or anything else. If you have ever been forced to work with SOAP you will know all about WSDLs. If you
know what they are, be happy you don’t have to work with them anymore. If you don’t know what they are
then be happy you never had to learn. SOAP was the worst.

Input is purely a HTTP request and there are multiple parts to this. Here is an example:

3.1 Requests

1 GET /places?lat=40.759211&lon=-73.984638 HTTP/1.1

2 Host: api.example.com

This is a very simple GET request. We can see the URL path being requested is /places with a query string
of lat=40.759211&lon=-73.984638. The HTTP version in use is HTTP/1.1, the host name is defined. This is
essentially what your browser does when you go to any website. Rather boring I’m sure.

1 POST /moments/1/gift HTTP/1.1

2 Host: api.example.com

3 Authorization: vr5HmMkzlxKE70W1y4MibiJUusZwZC25NOVBEx3BD1

4 Content-Type: application/json

5

6 { "user_id" : 2 }

Here we make a POST request with a “HTTP Body” The Content-Type header points out we are sending
JSON and the blank line above the JSON separates the “HTTP Headers” from the “HTTP Body”. HTTP really
is amazingly simple, this is all you need to do for anything and you can do all of this with a HTTP client in
whatever programming language you feel like using this week:

Using PHP and the Guzzle HTTP library to make a HTTP Request

1 use Guzzle\Http\Client;

2

3 $headers = [

4 'Authorization' => 'vr5HmMkzlxKE70W1y4MibiJUusZwZC25NOVBEx3BD1',

5 'Content-Type' => 'application/json',

6 ];

7 $payload = [



Input and Output Theory 18

8 'user_id' => 2

9 ];

10

11 // Create a client and provide a base URL

12 $client = new Client('http://api.example.com');

13

14 $req = $client->post('/moments/1/gift, $headers, json_encode($payload))

Using Python and the Requests HTTP library to make a HTTP Request

1 import requests

2

3 headers = {

4 'Authorization': 'vr5HmMkzlxKE70W1y4MibiJUusZwZC25NOVBEx3BD1',

5 'Content-Type': 'application/json',

6 }

7 payload = {

8 'user_id': 2

9 }

10 req = requests.post('http://api.example.com/moments/1/gift', data=json.dumps(payload), hea\

11 ders=headers)

It’s all the same. Define your headers, define the body in an appropriate format and send it on its way. Then
you get a response, so let’s talk about those.

3.2 Responses

Much the same as a HTTP Request your HTTP Response is going to end up as plain text (unless you’re using
SSL but shut up we aren’t there yet).

Example HTTP response containing a JSON body

1 HTTP/1.1 200 OK

2 Server: nginx

3 Content-Type: application/json

4 Connection: close

5 X-Powered-By: PHP/5.5.5-1+debphp.org~quantal+2

6 Cache-Control: no-cache, private

7 Date: Fri, 22 Nov 2013 16:37:57 GMT

8 Transfer-Encoding: Identity

9



Input and Output Theory 19

10 {"id":1690,"is_gift":true,"user":{"id":1,"name":"Theron Weissnat","bio":"Occaecati exceptu\

11 ri magni odio distinctio dolores illum voluptas voluptatem in repellendus eum enim ","gend\

12 er":"female","picture_url":"https:\/\/si0.twimg.com\/profile_images\/711293289\/hhdl-twitt\

13 er_normal.png","cover_url":null,"location":null,"timezone":-1,"birthday":"1989-09-17 16:27\

14 :36","status":"available","created_at":"2013-11-22 16:37:57","redeem_by":"2013-12-22 16:37\

15 :57"}

We can spot some fairly obvious things here. 200 OK is a standard “no issues here buddy” response. We have
a Content-Type again, and the API is pointing out that caching this is not ok. The X-Powered-By header is
also a nice little reminder that I should switch expose_php = On to expose_php = Off in php.ini. Oops.

This is essentially the majority of how an API works. Just like learning a programming language you will
always come across new functions and utilities which will improve the RESTful-ness of your API and I will
point out a bunch of them as we go, but just like the levenshtein()¹ there will be HTTP Headers that you had
no idea existed popping up that you will think “How the shit did I not notice that?”.

3.3 Supporting Formats

Picking what formats to support is hard, but there are a few easy wins to make early on.

No Form Data

PHP developers always try to do something that literally nobody else does, and that is to send data to the API
using: application/x-www-form-urlencoded.

This mime-type is one of the fewways that browsers send data via a formwhen you use HTTP POST, and PHP
will take that data, slice it up and make it available in $_POST. Because of this convenient feature many PHP
developers will make their API send data that way, then wonder why sending data with PUT is “different”.

Urf.

$_GET and $_POST have nothing to do with HTTP GET and HTTP POST. $_GET just contains query string
content regardless of the HTTP method. $_POST contains the values of the HTTP Body if it was in the right
format and the Content-Type header is application/x-www-form-urlencoded.

So knowing that PHP just has some silly names for things, we can move on and completely ignore $_POST.
Pour one out in the ground, because it is dead to you.

Why? Somany reasons, including the fact that once again everything in application/x-www-form-urlencoded
is a string.

1 foo=something&bar=1&baz=0

Yeah you have to use 1 or 0 because bar=true would be string("true") on the server-side. Data-types are
important, so lets not just throw them out the window for the sake of “easy access to our data”. That argument
is also moronic as Input::json('foo') is possible in most decent PHP frameworks and even without it you
just have to file_get_contents('php://input') to read the HTTP body yourself.

¹http://php.net/manual/en/function.levenshtein.php

http://php.net/manual/en/function.levenshtein.php
http://php.net/manual/en/function.levenshtein.php


Input and Output Theory 20

1 POST /checkins HTTP/1.1

2 Host: api.example.com

3 Authorization: vr5HmMkzlxKE70W1y4MibiJUusZwZC25NOVBEx3BD1

4 Content-Type: application/json

5

6 {

7 "checkin": {

8 "place_id" : 1,

9 "message": "This is a bunch of text.",

10 "with_frinds": [1, 2, 3, 4, 5]

11 }

12 }

This is a perfectly valid HTTP body for a checkin. You know what they are saying, you know who the user
is from their auth token, you know who they are with and you get the benefit of having it wrapped up in a
single checkin key for simple documentation and easy “You sent a checkin object to the user settings page…
dumbass.” responses.

That same request using form data is a mess.

1 POST /checkins HTTP/1.1

2 Host: api.example.com

3 Authorization: vr5HmMkzlxKE70W1y4MibiJUusZwZC25NOVBEx3BD1

4 Content-Type: application/x-www-form-urlencoded

5

6 checkin[place_id]=1&checkin[message]=This is a bunch of text&checkin[with_frinds][]=1&chec\

7 kin[with_frinds][]=2&checkin[with_frinds][]=3&checkin[with_frinds][]=4&checkin[with_frinds\

8 ][]=5

This makes me upset and angry. Do not do it in your API.

Finally, do not try to be clever by mixing JSON with form data:

1 POST /checkins HTTP/1.1

2 Host: api.example.com

3 Authorization: vr5HmMkzlxKE70W1y4MibiJUusZwZC25NOVBEx3BD1

4 Content-Type: application/x-www-form-urlencoded

5

6 json="{

7 \"checkin\": {

8 \"place_id\" : 1,

9 \"message\": \"This is a bunch of text.\",

10 \"with_frinds\": [1, 2, 3, 4, 5]

11 }

12 }"



Input and Output Theory 21

Who the hell is the developer trying to impress with stuff like that? It is insanity and anyone who tries this
needs to have their badge and gun revoked.

JSON and XML

Anymodern API you talk to will support JSON unless it is a financial services API or the developer is a moron
- probably both to be fair. Sometimes they will support XML too. XML used to be a the popular format for
data transfer with both SOAP and XML-RPC (duh). XML is however a nasty-ass disgusting mess of tags and
the file-size of an XML file containing the same data as a JSON file is often much larger.

Beyond purely the size of the data being stored, XML is horribly bad at storing type. That might not worry a
PHP developer all that much as PHP is not really any better when it comes to type, but look at this:

1 {

2 "place": {

3 "id" : 1,

4 "name": "This is a bunch of text.",

5 "is_true": false,

6 "maybe": null,

7 "empty_string": ""

8 }

9 }

That response in XML:

1 <places>

2 <place>

3 <id>1</id>,

4 <name>This is a bunch of text.</name>

5 <is_true>0</is_true>

6 <maybe />

7 <empty_string />

8 </place>

9 </places>

Basically in XML everything is considered a string, meaning integers, booleans and nulls can be confused.
Both maybe and empty_string have the same value, because there is no way to denote null either. Gross…

Now, the XML-savvy among you will be wondering why I am not using attributes to simplify it? Well, this
XML structure is a typical “auto-generated” chunk of XML converted from an array in the same way that
JSON is built - but this of course ignores attributes and does not allow for all the specific structure that your
average XML consumer will demand.

If you want to start using attributes for some bits of data but not others then your conversion logic becomes
INSANELY complicated. How would we build something like this?



Input and Output Theory 22

1 <places>

2 <place id="1" is_true="1">

3 <name>This is a bunch of text.</name>

4 <empty_string />

5 </place>

6 </places>

The answer is unless you seek specific fields and try to guess that an “id” is probably an attribute, etc then
there is no programatic way in your API to take the same array and make JSON AND XML. Instead you
realistically need to use a “view” (from the MVC pattern) to represent this data just like you would with
HTML or work with XML generation in a more OOP way. Either way it is an abomination and I refuse to
work in those conditions. Luckily nobody at Kapture wants XML so I don’t have to move back to England
just yet.

If your team is on the fence about XML and you don’t 100% need it, then don’t bother using it. I know it is
fun to show off your API switching formats and supporting all sorts of stuff, but I would strongly urge you to
work out what format(s) you actually need and STICK TO THOSE. Sure Flickr supports lolcat as input and
output, but they have a much bigger team so you don’t need to worry about it. JSON is fine. If you have a lot
of Ruby bros around then you will probably want to output YML too, which is as easy to generate as JSON
in most cases.

3.4 Content Structure

This is a tough topic and there is no right answer and whether you use EmberJS, RestKit or any other
framework with knowledge of REST you will find somebody annoyed that the data is not in their preferred
format. There are a lot of factors and I will simply explain them all and let you know where I landed.

JSON API

There is one recommended format on JSON API² which maybe you all just want to use. It suggests that both
single resources and resource collections should both be inside a plural key.

1 {

2 "posts": [{

3 "id": "1",

4 "title": "Rails is Omakase"

5 }]

6 }

Pros

• Consistent response, always has the same structure

²http://jsonapi.org/format/

http://jsonapi.org/format/
http://jsonapi.org/format/


Input and Output Theory 23

Cons

• Some RESTful/Data utilities freak about have single responses in an array
• Potentially confusing to humans

EmberJS (EmberData) out of the box will get fairly sad about this and I had trouble hacking it to support the
fact that only requesting one item would still return an array that looks like it could contain multiple. It seems
(to me) to be a weird rule. Imagine you call /me to get the current user, and it gives you a collection? What
the hell?

Do not discount JSON API as it is a wonderful resource with a lot of great ideas, but it strikes me as over-
complicated in multiple areas.

Twitter-style

Ask for one user get one user:

1 {

2 "name": "Phil Sturgeon",

3 "id": "511501255"

4 }

Ask for a collection of things and get a collection of things:

1 [

2 {

3 "name": "Hulk Hogan",

4 "id": "100002"

5 },

6 {

7 "name": "Mick Foley",

8 "id": "100003"

9 }

10 ]

Pros

• Minimalistic response
• Almost every framework/utility can comprehend it

Cons

• No space for pagination or other meta data

This is potentially a reasonable solution if you will never use pagination or meta data.



Input and Output Theory 24

Facebook-style

Ask for one user get one user:

1 {

2 "name": "Phil Sturgeon",

3 "id": "511501255"

4 }

Ask for a collection of things and get a collection of things, but namespaced:

1 {

2 "data": [

3 {

4 "name": "Hulk Hogan",

5 "id": "100002"

6 },

7 {

8 "name": "Mick Foley",

9 "id": "100003"

10 }

11 ]

12 }

Pros

• Space for pagination and other meta data in collection
• Simplistic response even with the extra namespace

Cons

• Single items still can only have meta data by embedding it item resource

By placing the collection into the “data” namespace you can easily add other content next to it which relates
to the response but is not part of the list of resources at all. Counts, links, etc can all go here (more on this
later). It also means when you embed other nested relationships you can include a “data” element for them
and even include meta data for those embedded relationships. More on that latr too.

The only potential “con” left with Facebook is that the single resources are not namespaced, meaning that
adding any sort of meta data would pollute the global namespace - something which PHP developers are
against after a decade of flagrantly doing so.

So the final output example (and the one which I am starting to use at Kapture for v4) is this;

Much Namespace, Nice Output

Namespace the single items.



Input and Output Theory 25

1 {

2 "data": {

3 "name": "Phil Sturgeon",

4 "id": "511501255"

5 }

6 }

Namespace the multiple items.

1 {

2 "data": [

3 {

4 "name": "Hulk Hogan",

5 "id": "100002"

6 },

7 {

8 "name": "Mick Foley",

9 "id": "100003"

10 }

11 ]

12 }

This is close to the JSON API response, has the benefits of the Facebook approach and is just like Twitter
but everything is namespaced. Some folks (including me in the past) will suggest that you should change
“data” to “users” but when you start to nest your data you want to keep that special name for the name of the
relationship. For example:

1 {

2 "data": {

3 "name": "Phil Sturgeon",

4 "id": "511501255"

5 "comments": {

6 "data": [

7 {

8 "id": 123423

9 "text": "MongoDB is web-scale!"

10 }

11 ]

12 }

13 }

14 }

So here we can see the benefits of keeping the root scope generic. We know that a user is being returned
because we are requesting a user, and when comments are being returned we wrap that in a “data” item so



Input and Output Theory 26

that pagination or links can be added to that nested data too. This is the structure I will be testing against and
using for examples, but it is only a simple tweak between any of these structures.

We will get to links, relationships, side-loading, pagination, etc in later chapters, but for now forget about it.
All you want to worry about is your response, which consists of this chunk of data or an error.



4 Status Codes, Errors and Messages
If everything goes smoothly you want to show some data. If a valid request comes in for a data which is valid
you show data, if creating something on the API with valid data, you show the created object. If something
goes wrong, however, you want to let people know what is wrong using two simultaneous approaches:

1. HTTP status codes
2. Custom error codes and messages

4.1 HTTP Status Codes

Status Codes are used in all responses and have a number from 200 to 507 - with plenty of gaps in between -
and each has a message and a definition. Most server-side languages, frameworks, etc default to “200 OK”.

Status codes are grouped into a few different categories:

2xx is all about success
Whatever the client tried to do was successful up to the point that the response was send. Keep in mind that
a status like 202 Accepted doesn’t say anything about the actual result, it only indicates that a request was
accepted and is being processed asynchronously.

3xx is all about redirection
These are all about sending the calling application somewhere else for the actual resource. The best known
of these are the 303 See Other and the 301 Moved Permanently which are used a lot on the web to redirect a
browser to another URL.

4xx is all about client errors
With these status codes we indicate that the client has done something invalid and needs to fix the request
before resending it.

5xx is all about service errors
With these status codes we indicate that something went wrong in the service. For example a database
connection failed. Typically a client application can retry the request. The server can even specify when
the client is allowed to retry the command using a Retry-After HTTP header.

Using HTTP status codes in a REST service¹ – Maurice de Beijer

For a more complete list of HTTP status codes and their definitions the REST &WOAWiki² has an extensive
list of them.

Arguments between developers will continue for the rest of time over the exact appropriate code to use in
any given situation, but these are the status codes the API uses at Kapture:

¹http://www.develop.com/httpstatuscodesrest
²http://restpatterns.org/HTTP_Status_Codes

http://www.develop.com/httpstatuscodesrest
http://restpatterns.org/HTTP_Status_Codes
http://www.develop.com/httpstatuscodesrest
http://restpatterns.org/HTTP_Status_Codes


Status Codes, Errors and Messages 28

• 200 - Generic everything is OK
• 201 - Created something OK
• 202 - Accepted but is being processed async (video is encoding, image is resizing, etc)
• 400 - Wrong arguments (missing validation)
• 401 - Unauthorized (no current user and there should be)
• 403 - The current user is forbidden from accessing this data
• 404 - That URL is not a valid route, or the item resource does not exist
• 410 - Data has been deleted, deactivated, suspended, etc
• 405 - Method Not Allowed (your framework will probably do this for you)
• 500 - Something unexpected happened and it is the APIs fault
• 503 - API is not here right now, please try again later

It can be tempting to try and squeeze as many error codes in as you can, but I would advise you to try and
keep it simple. You won’t unlock any achievements for using them all.

Most 5xx issues will most likely happen under odd architecture or server related issues that are nothing to do
with your API, like if PHP-FPM segfaults behind nginx (502), if your Amazon Elastic Load Balancer has no
health instances (503) or if your hard-drive fills up somehow (507).

4.2 Error Codes and Error Messages

Error codes are usually strings or integers that act as a unique index to a correspond human-readable error
message with more information about what is going wrong. That sounds a lot like HTTP status codes, but
these errors are about application specific things that may or may not be anything to do with HTTP specific
responses.

Some folks will try to use HTTP status codes exclusively and skip using error codes because they do not like
the idea of making their own error codes or having to document them, but this is not a scalable approach.
There will be some situations where the same endpoint could easily return the same status code for more than
one different condition. The status codes are there to merely hint what is going on, relying on the actual error
code and error message to provide more information if the client is interested.

For example, an issuewith the access tokenwill always result in the user not being recognized. An uninterested
client would simply say “User could not get in” while a more interested client would probably prefer to offer
suggestions via messages in their own webapp/iPhone app interface.

1 {

2 error: {

3 type: "OAuthException",

4 message: "Session has expired at unix time 1385243766. The current unix time is 138584\

5 8532."

6 },

7 }

Everyone can understand that. Facebook sadly is missing an error code, so sometimes you find yourself doing
string checking on the message which is lunacy, so throw in a code too.



Status Codes, Errors and Messages 29

..

Foursquare is not a bad example of using both, but they place an emphasis on tying their errors to a status
code.

https://developer.foursquare.com/overview/responses

Twitter does a great job of having HTTP status codes documented and having specific error codes for other
issues too. Some are tied to HTTP status codes (which is fine) but many are not. Some are also tied to the
same status code, highlighting the issues raised above.

https://dev.twitter.com/docs/error-codes-responses

Code Text Description

161 You are unable to follow more
people at this time

Corresponds with HTTP 403 -
thrown when a user cannot follow
another user due to some kind of
limit

179 Sorry, you are not authorized to
see this status

Corresponds with HTTP 403 -
thrown when a Tweet cannot be
viewed by the authenticating user,
usually due to the tweet’s author
having protected their tweets.

Programmatically Detecting Error Codes

Here is an example of the sort of ways people can use error codes to make their application respond
intelligently to failure of something as basic as a posted Twitter status:

1 try:

2 api.PostUpdates(body['text'])

3

4 except twitter.TwitterError, exc:

5

6 skip_codes = [

7 # Page does not exist

8 34,

9

10 # You cannot send messages to users who are not following you

11 150,

12

13 # Sent too many

14 # TODO Make this requeue with a dekay somehow

15 151

16 ]

17

18 error_code = exc.__getitem__(0)[0]['code']

https://developer.foursquare.com/overview/responses
https://dev.twitter.com/docs/error-codes-responses


Status Codes, Errors and Messages 30

19

20 # If the token has expired then lets knock it out so we don't try again

21 if error_code in skip_codes:

22 message.reject()

23

24 else:

25 # Rate limit exceeded? Might be worth taking a nap before we requeue

26 if error_code == 88:

27 time.sleep(10)

28

29 message.requeue()

Compare this sort of logic with Facebook - and their lack of error codes:

1 except facebook.GraphAPIError, e:

2

3 phrases = ['expired', 'session has been invalidated']

4

5 for phrase in phrases:

6

7 # If the token has expired then lets knock it out so we dont try again

8 if e.message.find(phrase) > 0:

9 log.info("Deactivating Token %s", user['token_id'])

10 self._deactivate_token(user['token_id'])

11

12 log.error("-- Unknown Facebook Error", exec_info=True)

If they change their error messages then this might stop working, which would be shitty.

4.3 Common Pitfalls

200 OK and Error Code

If you return a HTTP status code of 200 with an error code then Chuck Norris will roundhouse your door
in, destroy your computer, instantly 35-pass wipe your backups, cancel your Dropbox account and block you
from GitHub. HTTP 4xx or 5xx codes alert the client that something bad happened, and error codes provide
specifics of the exact issue if the client is interested.

Non-Existent, Gone, or Hiding?

404 is drastically overused in applications. People use it for “never existed”, “no longer exists”, “you can’t view
it” and “it is deactivated” which is way too vague. That can be split up into 404, 403 and 410 but this is still
vague.



Status Codes, Errors and Messages 31

If you get a 403 this could be because the requesting user is in not in the correct group to see the requested
content. Should the client suggest you upgrade your account somehow? Are you not friends with the users
content you are trying to view? Should the client suggest you add them as a friend?

A 410 on a resource could be due to a user deleting that entire piece of content or it could be down to the user
deleting their entire account.

In all of these situations the ideal solution is to compliment the HTTP status code with an error code, which
can be whatever you want as long as they are unique within your API and documented somewhere. Do not
do what Google does and supply a list of error codes then have other error codes which are not documented
anywhere, because if I see that I will come for you.



5 Endpoint Testing
You might be sitting there thinking “This really escalated quickly, I’m not ready for testing!” but this is
essentially the point. You have to set up your tests as early as possible so you actually bother using them,
otherwise they become the “next thing” that just never gets done. Have no fear, testing an API is not only
easy it is actually really quite fun.

5.1 Concepts & Tools

With an API there are a few things to test, but the most basic idea is “when I request this URL, I want to see
a ‘foo’ resource”, and “when I throw this JSON at the API, it should accept it or freak out.”

This can be done in several ways and a lot of people will instantly try to unit-test it, but that quickly becomes
a nightmare as while you might think just writing a bit of code with your favorite HTTP client is simple, if
you have over 50 endpoints and want to do multiple checks per endpoint you end up with a MESS of code
and it’s no fun for anyone.

The more code you have in your tests, the higher the chances of your tests being rubbish and you run the risk
of false positives, which are super dangerous.

So, the most simplistic approach will be to use a BDD tool. A very popular BDD tool is Cucumber¹ and this
is considered by many to be a Ruby tool. It can in fact be used for Python, PHP and probably a whole bevy
of other languages but some of the integrations can be tricky. For the PHP users here, we will be using Behat
which is pretty much the same thing, along with Gherkin² (the same DSL that Cucumber uses, so all of us are
on basically the same page.)

5.2 Setup

If you are a Ruby user you have the ease of simply running $ gem install cucumber, or shove it in your
Gemfile, whatever.

As a PHP developer you simply need to install Behat, and this can be done with Composer³. It is fair to assume
that if you are using any sort of modern PHP framework you are already familiar with this so I won’t bore
the non-PHP devs by getting stuck into it, but your composer.json file should have these items inside:

¹http://cukes.info/
²http://docs.behat.org/guides/1.gherkin.html
³http://getcomposer.org/

http://cukes.info/
http://docs.behat.org/guides/1.gherkin.html
http://getcomposer.org/
http://cukes.info/
http://docs.behat.org/guides/1.gherkin.html
http://getcomposer.org/


Endpoint Testing 33

Basic composer.json requirements for Behat

1 {

2 "require": {

3 "behat/behat": "2.4.*@stable"

4 },

5

6 "config": {

7 "bin-dir": "bin/"

8 }

9 }

Run $ composer install and you should be good to go.

God knows what to do with Python. Google should help you there. This could get complicated so I’m going
to stick with PHP and Behat and you folks can just convert in your head as we go.

5.3 Initialise

Make a folder inside your codebase repo called “tests” and another inside that called “behat” - because one
day maybe there will be lots of different types of test.

1 $ cd /path/to/my/app

2 $ mkdir tests && mkdir tests/behat

3 $ cd tests/behat

4 $ ../../bin/behat --init

This will have the following output:

1 +d features - place your *.feature files here

2 +d features/bootstrap - place bootstrap scripts and static files here

3 +f features/bootstrap/FeatureContext.php - place your feature related code here

Next.

5.4 Features

Features are a way to group your various tests together. For me I keep things fairly simple and consider each
“resource” and “sub-resource” to be its own “feature”.

Looking at our users example from Chapter 2:



Endpoint Testing 34

Action Endpoint Feature

Create POST /users features/users.feature
Read GET /users/X features/users.feature
Update POST /users/X features/users.feature
Delete DELETE /users/X features/users.feature
List GET /users features/users.feature
Image PUT /users/X/image features/users-image.feature
Favorites GET /users/X/favorites features/users-favorites.feature
Checkins GET /users/X/checkins features/users-checkins.feature

So, anything to do with /places and /places/X would be the same, but as soon as you start looking at
/places/X/checkins that becomes a new feature because we are talking about something else.

You can use that convention or try something else, but this grows pretty well without having a bazillion files
to sift through.

5.5 Scenarios

Gherkin uses “Scenarios” as its core structure and they each contain “steps”. In a unit-testing word these would
be their own methods, and the “steps” would be “assertions”.

These Features and Scenarios line up with the “Action Plan” created in Chapter 2. Each RESTful Resource
needs at least one “Feature”, and because each “Action” has an “Endpoint” we need at least one “Scenario”
for each “Action”.

Too much jargon? Time for an example:

1 Feature: Places

2

3 Scenario: Finding a specific place

4 When I request "GET /places/1"

5 Then I get a "200" response

6 And scope into the "data" property

7 And the properties exist:

8 """

9 id

10 name

11 lat

12 lon

13 address1

14 address2

15 city

16 state

17 zip

18 website

19 phone

20 created_at



Endpoint Testing 35

21 """

22 And the "id" property is an integer

23

24 Scenario: Listing all places is not possible

25 When I request "GET /places"

26 Then I get a "400" response

27

28 Scenario: Searching non-existent places

29 When I request "GET /places?q=c800e42c377881f8202e7dae509cf9a516d4eb59&lat=1&lon=1"

30 Then I get a "200" response

31 And the "data" property contains 0 items

32

33 Scenario: Searching places with filters

34 When I request "GET /places?lat=40.76855&lon=-73.9945&q=cheese"

35 Then I get a "200" response

36 And the "pagination" property is an object

37 And the "data" property is an array

38 And scope into the first "data" property

39 And the properties exist:

40 """

41 id

42 name

43 lat

44 lon

45 address1

46 address2

47 city

48 state

49 zip

50 website

51 phone

52 created_at

53 """

54 And reset scope

This uses some custom rules which have been defined in features/bootstrap/FeatureContext.php but more
on that shortly.

The Feature file is called places.feature and has 4 scenarios. One to show that listing all places is not allowed
(400 means bad input, your should specify lat lon), another to find a specific place and two more to test how
well searching works.

I try to think up the guard clauses that my endpoints will need, then make a “Scenario” for each of those. So,
if you don’t send a lat/lon to search then it errors. Test that.

Expecting a boolean value but get a string? Test that:



Endpoint Testing 36

1 Scenario: Wrong Arguments for user follow

2 Given I have the payload:

3 """

4 {"is_following": "foo"}

5 """

6 When I request "PUT /users/1"

7 Then I get a "400" response

Want to be sure your controllers can handle weird requests with a 404 instead of freaking out and going all
500 Internal Error? Test that.

1 Scenario: Try to find an invalid moments

2 When I request "GET /moments/nope"

3 Then I get a "404" response

Sure you don’t actually have any code yet, but you can write all of these tests based off of nothing but your
“Action Plan” and your Routes. You should use what you know about the output content structure from
Chapter 3 to plan what output you expect to see.

Then all you need to do is… you know… build your entire API. We’ll get there.

5.6 Prepping Behat

You are probably wondering how you actually run these tests, because Behat involves making HTTP requests
and you’ve just been writing text-files. Well, the class in FeatureContext.php handles all of that and a lot
more, but first we need to configure Behat so we know what the hostname is going to be for these requests.

1 $ vim tests/behat/behat-dev.yml

In this file put in something along the lines of:

1 default:

2 context:

3 parameters:

4 base_url: http://localhost

If you have virtual hosts set up on your machine then use those, and if you are running a local web-server
on a different port then obviously you can use that too. That value could be http://localhost:4000 or
http://dev-api.example.com, it does not matter.

With that ready - and if you wish to use the extra functionality provided in the examples above - you will need
to use the file located in the resource ZIP listed in the intro. The file is build-apis-you-wont-hate/behat/FeatureContext.php
and it replaces the default tests/behat/bootstrap/FeatureContext.php.

5.7 Running Behat

This is the easiest bit:



Endpoint Testing 37

1 $ ./vendor/bin/behat -c tests/behat/behat-dev.yml

Everything is broken. Yaaay!

In the next chapter we will start to turn some of these tests green by putting actual data in there.



6 Outputting Data
In Chapter 3: Input and Output Theory we looked at the theory of the output structure and the pros and cons
for various different formats. This book assumes you have picked your favorite, and it assumes that favorite
is my favorite. This doesn’t matter all that much but doing everything for everyone would be an exercise in
futility and boredom.

The aim of this chapter is to help you build out your controller endpoints so that you can fill up a few of those
tests with green lights, instead of the omnishambles of errors and fails you are most likely facing.

The examples in the first section will be trying to show off a list of places, and show of one specific place:

1 {

2 "data": [

3 {

4 "id": 2,

5 "name": "Videology",

6 "lat": 40.713857,

7 "lon": -73.961936,

8 "created_at": "2013-04-02"

9 },

10 {

11 "id": 1,

12 "name": "Barcade",

13 "lat": 40.712017,

14 "lon": -73.950995,

15 "created_at": "2012-09-23"

16 }

17 ]

18 }

1 {

2 "data": [

3 "id": 2,

4 "name": "Videology",

5 "lat": 40.713857,

6 "lon": -73.961936,

7 "created_at": "2013-04-02"

8 ]

9 }



Outputting Data 39

6.1 The Direct Approach

The first thing that every developer tries to do is take their favorite ORM, ODM, DataMapper or Query Builder,
pull up a query and wang that result directly into the output.

Dangerously bad example of passing data from the database directly as output

1 <?php

2 class PlaceController extends ApiController

3 {

4 public function show($id)

5 {

6 return json_encode([

7 'data' => Place::find($id)->toArray(),

8 ]);

9 }

10

11 public function list()

12 {

13 return json_encode([

14 'data' => Place::all()->toArray(),

15 ]);

16 }

17 }

This is the absolute worst idea you could have for enough reasons for me to fill up a chapter on its own, but
I will try to keep it to just a section.

ORMs in Controllers
Your controller should definitely not have this sort of ORM/Query Builder logic scattered around
the methods. This is done to keep the example to one class.

Performance: If you return “all” items then that will be fine during development, but suck when you have a
thousand records in that table… or a million.

Display: PHP’s popular SQL extensions all type-cast all data coming out of a query as a string, so if you have
a MySQL “boolean” field (generally this is a tinyint(1) field with a value of 0 or 1) will display in the JSON
output as a string, with a value of "0" or "1" which is lunacy. If you’re using PostgreSQL it is even worse,
the value directly output by PHP’s PostgreSQL driver is "f" or "t". Your mobile developers won’t like it one
bit, and anyone looking at your public API is going to immediately consider this an amateur API. You want
true or false as an actual JSON boolean, not a numeric string or a char(1).

Security: Outputting all fields can lead to API clients (users of all sorts) being able to view your users
passwords, see sensitive information like email addresses for businesses involved (venues, partners, events,



Outputting Data 40

etc), gain access to secret keys and tokens generally not allowed. If you leak your forgotten password tokens
for example then you’re going to have an EXTREMELY bad time, its as bad as leaking the password itself.

Some ORM’s have a “hidden” option to hide specific fields from being output. If you can promise that you
and every single other developer on your team (now, next year and for the entire lifetime of this application)
will remember about that then congratulations, you could also achieve world peace with a team that focused.

Stability: If you change the name of a database field, or modify your MongoDB document, or change the
statuses available for a field between v3 and v4 then your API will continue to behave perfectly, but all of
your iPhone users are going to have busted crashing applications and it is your fault. You’ll promise yourself
that you won’t change things, but you absolutely will. Change happens.

So, next our theoretical developer friend will try hard-coding the output.

Laborious example of type-casting and formatting data for output

1 <?php

2 class PlaceController extends ApiController

3 {

4 public function show($id)

5 {

6 $place = Place::find($id);

7

8 return json_encode([

9 'data' => [

10 'id' => (int) $place->id,

11 'name' => $place->name,

12 'lat' => (float) $place->lat,

13 'lon' => (float) $place->lon,

14 'created_at' => (string) $place->created_at,

15 ],

16 ]);

17 }

18

19 public function list()

20 {

21 $places = array();

22

23 foreach (Place::all() as $place) {

24 $places[] = [

25 'id' => (int) $place->id,

26 'name' => $place->name,

27 'lat' => (float) $place->lat,

28 'lon' => (float) $place->lon,

29 'created_at' => (string) $place->created_at,

30 ];

31 }



Outputting Data 41

32

33 return json_encode([

34 'data' => $places,

35 ]);

36 }

37 }

Thanks to specifying exactly what fields to return in the JSON array the security issues are taken care of.
The type-casting of various fields turn numeric strings into integers, coordinates into floats, and that pesky
Carbon (DateTime) object from Laravel into a string, instead of letting the object turn itself into an array.

The only issue this has not taken care of from the above example is performance, but that is a job for pagination
which will be covered in a later chapter.

A new issue has however been created, which should be a fairly obvious one: This is icky. Our theoretical
developer now tries something else.

Considerably better approach to formatting data for output

1 <?php

2 class PlaceController extends ApiController

3 {

4 public function show($id)

5 {

6 $place = Place::find($id);

7

8 return json_encode([

9 'data' => $this->transformPlaceToJson($place),

10 ]);

11 }

12

13 public function list()

14 {

15 $places = array();

16 foreach (Place::all() as $place) {

17 $places[] = $this->transformPlaceToJson($place);

18 }

19

20 return json_encode([

21 'data' => $places,

22 ]);

23 }

24

25 private function transformPlaceToJson(Place $place)

26 {



Outputting Data 42

27 return [

28 'id' => (int) $place->id,

29 'name' => $place->name,

30 'lat' => (float) $place->lat,

31 'lon' => (float) $place->lon,

32 'created_at' => (string) $place->created_at,

33 ];

34 }

35 }

Certainly much better, but what if a different controller wants to show a place at any point? You could
theoretically move all of these transform methods to a new class or shove them in the ApiController, but
that would just be odd.

Really you want to make what I have come to call “Transformers”, partially because the name is awesome
and because that is what they are doing.

These are essentially just classeswhich have a transformmethod, which does the same as the transformPlaceToJson()
above, but to avoid you having to learn how to make your own I have released a PHP package which takes
care of it: Fractal¹.

6.2 Transformations with Fractal

With Fractal, Transformers are created as either a callback or an instance of an object implementing
League\Fractal\TransformerAbstract. They do exactly the job that our transformPlaceToJson() method
did but they live on their own, are easily unit-testable (if that floats your boat) and remove a lot of presentation
clutter from the controller.

Fractal does a lot more than that which will be explored later on, but it covers concerns with transformation
perfectly, removes the security, stability and display concerns addressed earlier.

While other languages have great solutions for this already, PHP seemed to be rather lacking for this exact
purpose. Some call it “Data Marshalling” or “Nested Serialization”, but it is all achieving roughly the same
goal: take potentially complicated data from a range of stores and turn it into a consistent output.

• Jbuilder² looks fairly slick for the Ruby crowd
• Tweet other suggestions to @philsturgeon

That is the end of theory in this book. We will now be working with code. Open up the Sample Code ZIP file
or head to the GitHub repo³ and extract it somewhere useful.

¹https://packagist.org/packages/league/fractal
²https://github.com/rails/jbuilder
³https://github.com/philsturgeon/build-apis-you-wont-hate

https://packagist.org/packages/league/fractal
https://github.com/rails/jbuilder
https://github.com/philsturgeon/build-apis-you-wont-hate
https://packagist.org/packages/league/fractal
https://github.com/rails/jbuilder
https://github.com/philsturgeon/build-apis-you-wont-hate


Outputting Data 43

1 $ cd chapter6

2 $ ./run-demo.sh

3 PHP 5.5.6 Development Server started at Tue Dec 10 23:30:32 2013

4 Listening on http://localhost:5000

5 Document root is /some/place/chapter6/public

6 Press Ctrl-C to quit.

Open your browser and go to http://localhost:5000/places, and there is a list of places looking like this:



Outputting Data 44

Fractal default JSON structure

This is a Laravel 4 application but only because it has migrations and seeding and I like it. This is made up of
a few bits of PHP that would work in any framework, and the approach works in any language.



Outputting Data 45

• composer.json - Added an autoloadable folder using PSR-0 to allow my own code to be loaded
• app/controllers/ApiController.php - Insanely simple base controller for wrapping responses
• app/controllers/PlaceController.php - Grab some data and pass it to the ApiController

Other than defining some basic GET routes in app/routes.php that is basically all that is being done.

The PlaceController looks like this:

Example of a controller using Fractal to output data

1 <?php

2 use App\Transformer\PlaceTransformer;

3

4 class PlaceController extends ApiController

5 {

6 public function index()

7 {

8 $places = Place::take(10)->get();

9 return $this->respondWithCollection($places, new PlaceTransformer);

10 }

11

12 public function show($id)

13 {

14 $place = Place::find($id);

15 return $this->respondWithItem($place, new PlaceTransformer);

16 }

17 }

The “raw data” (happens to be an ORM model but could be anything) is sent back with the appropriate
convenience method and a transformer instance is provided too. These respondWithCollection() and
respondWithItem()methods come fromApiController, and their job is just to create Fractal instances without
exposing as many classes to interact with.

The PlaceTransformer looks like this:

1 <?php namespace App\Transformer;

2

3 use Place;

4 use League\Fractal\TransformerAbstract;

5

6 class PlaceTransformer extends TransformerAbstract

7 {

8 /**

9 * Turn this item object into a generic array

10 *



Outputting Data 46

11 * @return array

12 */

13 public function transform(Place $place)

14 {

15 return [

16 'id' => (int) $place->id,

17 'name' => $place->name,

18 'lat' => (float) $place->lat,

19 'lon' => (float) $place->lon,

20 'address1' => $place->address1,

21 'address2' => $place->address2,

22 'city' => $place->city,

23 'state' => $place->state,

24 'zip' => (float) $place->zip,

25 'website' => $place->website,

26 'phone' => $place->phone,

27 ];

28 }

29 }

Simple.

The ApiController is kept super simple at this point too:

Simple ApiController for basic responses using Fractal

1 <?php

2

3 use League\Fractal\Resource\Collection;

4 use League\Fractal\Resource\Item;

5 use League\Fractal\Manager;

6

7 class ApiController extends Controller

8 {

9 protected $statusCode = 200;

10

11 public function __construct(Manager $fractal)

12 {

13 $this->fractal = $fractal;

14 }

15

16 public function getStatusCode()

17 {

18 return $this->statusCode;

19 }



Outputting Data 47

20

21 public function setStatusCode($statusCode)

22 {

23 $this->statusCode = $statusCode;

24 return $this;

25 }

26

27 protected function respondWithItem($item, $callback)

28 {

29 $resource = new Item($item, $callback);

30

31 $rootScope = $this->fractal->createData($resource);

32

33 return $this->respondWithArray($rootScope->toArray());

34 }

35

36 protected function respondWithCollection($collection, $callback)

37 {

38 $resource = new Collection($collection, $callback);

39

40 $rootScope = $this->fractal->createData($resource);

41

42 return $this->respondWithArray($rootScope->toArray());

43 }

44

45 protected function respondWithArray(array $array, array $headers = [])

46 {

47 return Response::json($array, $this->statusCode, $headers);

48 }

49

50 }

The method respondWithArray() takes a general array to convert into JSON, which will prove useful with
errors. Other than that everything you return will be a Fractal Item, or a Collection.

6.3 Hiding Schema Updates

Schema updates happen, and they can be hard to avoid. If the change in question is simply a renamed field
then this is insanely easy to handle:

Before

1 'website' => $place->website,

After



Outputting Data 48

1 'website' => $place->url,

By changing the right (our internal data structure) and keeping the left the same (the external field name) we
maintain control over the stability for the client applications.

Sometimes it is a status change. A new status is added, or the change is fairly drastic and the status all change,
but the old API version is still expecting the old one. Maybe someone changed “available” to “active” to be
consistent with the other tables, because the original developer was as consistent and logical as a rabid ferrit.

Before

1 'status' => $place->status,

After

1 'status' => $place->status === 'available' ? 'active' : $place->status,

Gross, but useful.

6.4 Outputting Errors

Exactly how to output errors is something I personally am still toying with. The current front-runner is adding
conveniencemethods to the ApiController which handle global routes with a constant as the code and a HTTP
error code set, with an optional message in case I want to override the message.

Simple error codes and responses added to ApiController

1 <?php

2

3 // ...

4

5 class ApiController extends Controller

6 {

7 // ...

8

9 const CODE_WRONG_ARGS = 'GEN-FUBARGS';

10 const CODE_NOT_FOUND = 'GEN-LIKETHEWIND';

11 const CODE_INTERNAL_ERROR = 'GEN-AAAGGH';

12 const CODE_UNAUTHORIZED = 'GEN-MAYBGTFO';

13 const CODE_FORBIDDEN = 'GEN-GTFO';

14

15 // ...

16

17 protected function respondWithError($message, $errorCode)



Outputting Data 49

18 {

19 if ($this->statusCode === 200) {

20 trigger_error(

21 "You better have a really good reason for erroring on a 200...",

22 E_USER_WARNING

23 );

24 }

25

26 return $this->respondWithArray([

27 'error' => [

28 'code' => $errorCode,

29 'http_code' => $this->statusCode,

30 'message' => $message,

31 ]

32 ]);

33 }

34

35 /**

36 * Generates a Response with a 403 HTTP header and a given message.

37 *

38 * @return Response

39 */

40 public function errorForbidden($message = 'Forbidden')

41 {

42 return $this->setStatusCode(403)->responseWithError($message, self::CODE_FORBIDDEN\

43 );

44 }

45

46 /**

47 * Generates a Response with a 500 HTTP header and a given message.

48 *

49 * @return Response

50 */

51 public function errorInternalError($message = 'Internal Error')

52 {

53 return $this->setStatusCode(500)->responseWithError($message, self::CODE_INTERNAL_\

54 ERROR);

55 }

56

57 /**

58 * Generates a Response with a 404 HTTP header and a given message.

59 *

60 * @return Response

61 */

62 public function errorNotFound($message = 'Resource Not Found')



Outputting Data 50

63 {

64 return $this->setStatusCode(404)->responseWithError($message, self::CODE_NOT_FOUND\

65 );

66 }

67

68 /**

69 * Generates a Response with a 401 HTTP header and a given message.

70 *

71 * @return Response

72 */

73 public function errorUnauthorized($message = 'Unauthorized')

74 {

75 return $this->setStatusCode(401)->responseWithError($message, self::CODE_UNAUTHORI\

76 ZED);

77 }

78

79 /**

80 * Generates a Response with a 400 HTTP header and a given message.

81 *

82 * @return Response

83 */

84 public function errorWrongArgs($message = 'Wrong Arguments')

85 {

86 return $this->setStatusCode(400)->responseWithError($message, self::CODE_WRONG_ARG\

87 S);

88 }

This basically allows for generic error messages to be returned in your controller without having to think too
much about the specifics.

Controller using Fractal, combined with a simple error response

1 <?php

2 use App\Transformer\PlaceTransformer;

3

4 class PlaceController extends ApiController

5 {

6 public function index()

7 {

8 $places = Place::take(10)->get();

9 return $this->respondWithCollection($places, new PlaceTransformer);

10 }

11

12 public function show($id)



Outputting Data 51

13 {

14 $place = Place::find($id);

15

16 if (! $place) {

17 return $this->errorNotFound('Did you just invent an ID and try loading a place? M\

18 uppet.');

19 }

20

21 return $this->respondWithItem($place, new PlaceTransformer);

22 }

23 }

Other “Place” specific errors could go directly into the PlaceController as methods just like these, with their
own constants in the controller, picking a statusCode in the method or relying on one as an argument.

6.5 Testing this Output

You have already seen how to test your endpoints using the Gherkin syntax in Chapter 5: Endpoint Testing,
so we can apply that testing logic to this output:

1 Feature: Places

2

3 Scenario: Listing places without search criteria is not possible

4 When I request "GET /places"

5 Then I get a "400" response

6

7 Scenario: Finding a specific place

8 When I request "GET /places/1"

9 Then I get a "200" response

10 And scope into the "data" property

11 And the properties exist:

12 """

13 id

14 name

15 lat

16 lon

17 address1

18 address2

19 city

20 state

21 zip

22 website

23 phone

24 created_at



Outputting Data 52

25 """

26 And the "id" property is an integer

27

28 Scenario: Searching non-existent place

29 When I request "GET /places?q=c800e42c377881f8202e7dae509cf9a516d4eb59&lat=1&lon=1"

30 Then I get a "200" response

31 And the "data" property contains 0 items

32

33

34 Scenario: Searching places with filters

35 When I request "GET /places?lat=40.76855&lon=-73.9945&q=cheese"

36 Then I get a "200" response

37 And the "data" property is an array

38 And scope into the first "data" property

39 And the properties exist:

40 """

41 id

42 name

43 lat

44 lon

45 address1

46 address2

47 city

48 state

49 zip

50 website

51 phone

52 created_at

53 """

54 And reset scope

This is again using the FeatureContext.php provided in the sample code, which makes it really easy to test
output. We are again assuming that all output is in a "data" element, which is either an object (when one
resource has been requested) or an array of objects (multiple resources or a collection have been requested).

When you are searching for data you want to ensure that not finding any data doesn’t explode. This can be
down to your controller processing on output and failing because what should be an array is null, or because
some PHP collection class is missing methods, etc. This is why we perform the search with a hardcoded
invalid search term, then check that it returns an empty collection:

1 {

2 "data": []

3 }

The line And the "data" property contains 0 items will cover this. Then we can search for valid terms,
knowing that our database seeder has made sure at least one Place has the keyword “cheese” in the name.



Outputting Data 53

Using the line And scope into the first "data" property the scope changes to be inside the first data
item returned, and the properties can be checked for existence too. If no data, or required fields are missing,
this test will fail.

6.6 Homework

Your homework is to take apart the sample application, fit it into your API and try to build valid output for
as many of your GET endpoints as possible. Check the data types and make sure the array structure is being
output in the way you expect using the test example above.

With valid output covered and basic errors covered, what is next? The most complicated part of API
generation, which at some point every developer has to try and work out: embedding/nesting resources,
or making “relationships”.



7 Data Relationships
If you’ve ever worked with relational databases the chances are you understand relationships. Users have
comments. Authors have one or many books. Books belong to a Publisher. Southerners have one or more
teeth. Whatever the example, relationships are incredibly important to any application and therefore an API
too.

RESTful Relationships don’t necessarily need to be directly mapped to database relationships. If your database
relationships are built properly, RESTful relationships will often be similar, but your RESTful output might
have extra dynamic relationships that aren’t defined by a JOIN, and might not necessarily include every
possible database relationship.

Put more eloquently:

REST components communicate by transferring a representation of a resource in a format
matching one of an evolving set of standard data types, selected dynamically based on the
capabilities or desires of the recipient and the nature of the resource. Whether the representation
is in the same format as the raw source, or is derived from the source, remains hidden behind the
interface. – Roy Fielding¹

This explanation highlights an important factor: the output has to be based on the “desires of the recipient”.
There are many popular approaches to designing RESTful relationships, but many of them don’t satisfy the
“desires of the recipient”. Still, I will cover the popular approaches with their pros and cons regardless.

7.1 Sub-Resources

One very simplistic way to approach related data is to offer up new URL’s for your API consumers to digest.
This was covered lightly in Chapter 2: Planning and Creating Endpoints, and is a perfectly valid approach.

If an API has places as a resource and wants to allow access to a place’s checkins, an endpoint could be made
to handle exactly that:

/places/X/checkins

The downside here is that it is an extra HTTP request. Imagine an iPhone application that wants to get all
places in an area and put them on a map, then allow a user to browse through them. If the place search
happens as one request, then the /places/X/checkins is executed each time the user clicks on a place, and
they will end up doing a lot of unecessary waiting. This is known as “n+1”, meaning your work done is
increased by an extra one request for each place you look up.

¹http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2


Data Relationships 55

That also assumes the only related data is checkins. At Kapture our API also has merchant, images, current_-
campaign and previous_campaigns to look up. Using “sub-resources” only would mean that 4 extra HTTP
requests per place need to happen, which is n+4.

If 50 places were returned and each time the related data had to be loaded, assuming the app user looked
through all 50 places there would be 1 initial request to get 50 results. For each of those results would be 4
more, meaning: 1 + (50 x 4) = 251. 251 HTTP requests happening (even assuming they are asyncronous)
is just unecessary and going over HTTP on a mobile is the slowest things you can do. Even with caching,
depending on the data set it could still be 251 requests.

Some API developers try to avoid going over HTTP too many times by shoving as much data as possible
into one request, so when you call the /places endpoint you automatically get checkins, current_opps,
merchants and images. Well, if you do not want that information you are waiting for huge file downloads
full of irrelevant JSON! Even with GZIP compression enabled on the web-server, downloading something you
don’t need is obviously not desirable, and can be avoided. This can mean major performance gains on mobile,
and minor gains over a slow network or weak Wi-Fi for desktop or tablets.

The trade-off here between “downloading enough data to avoid making the user wait for subsequent loads”
and “downloading too much data to make them wait for the initial load”. It’s hard, but you need the flexibility
and making sub-resources your only related data approach does not give the API consumer any flexibility.

7.2 Foreign Key Arrays

Another approach to related data is to provide an array of foreign keys in the output. To use an example from
EmberJS², if a post has multiple comments, the /posts endpoint could contain the following:

1 {

2 "post": {

3 "id": 1

4 "title": "Progressive Enhancement is Dead",

5 "comments": ["1", "2"],

6 "_links": {

7 "user": "/people/tomdale"

8 }

9 }

10 }

This is better. You still end up with n+1 requests, but at least you can take those ID’s and make a grouped
request like /comments/1,2 or /comments?ids=1,2 to reduce how many HTTP requests are being made.

Back to the places example, if you have 50 places returned and need 4 extra pieces of data, you could itterate
through the 50, map which items expect which pieces of data, request all unique pieces of data and only end
up with 1 + 4 = 5 HTTP requests instead of 251.

The downside is that your API consumer has to stitch all of that data together, which could be a lot of work
if it is a large dataset, so it is still not ideal.

²http://emberjs.com/guides/models/defining-models/

http://emberjs.com/guides/models/defining-models/
http://emberjs.com/guides/models/defining-models/
http://emberjs.com/guides/models/defining-models/


Data Relationships 56

7.3 Compound Documents (a.k.a Side-Loading)

Instead of just putting the foreign keys into the resource you can optionally side-load the data. I was having
a rough time of things trying to word an introduction, so I’ll let somebody else do it:

Compound documents contain multiple collections to allow for side-loading of related objects.
Side-loading is desirable when nested representation of related objects would result in potentially
expensive repetition. For example, given a list of 50 comments by only 3 authors, a nested
representationwould include 50 author objects where a side-loaded representationwould contain
only 3 author objects. **Source: ** https://canvas.instructure.com/doc/api/file.compound_docu-
ments.html

I found that by searching for “compound document”. I found that term by searching for “REST Side-Loading”.
I found that after having a horrible time with EmberJS forcing me to use the “side-loading” approach for
Ember Data, and they barely explain it themselves.

It looks a little like this:

1 {

2 "meta": {"primaryCollection": "comments"},

3 "comments": [...],

4 "authors": [...]

5 }

The pro suggested in the quote above is: if an embedded piece of data is commonly recuring, you do not have
to download the same resource multiple times. The con is that context gets lost in larger data structures and
it has the same issue as the “Foreign Key Array”: the mapping of data to create an acurate structure is left to
the API consumer, and that can be hard work.

7.4 Embedded Documents (a.k.a Nesting)

This is the approach I have been using in the latest two versions of the API at Kapture, and I will continue
to use it for the foreseeable future. It offers the most flexibility for the API consumer: meaning it can reduce
HTTP requests or reduce download size depending on what the consumer wants.

If a API consumer were to call the URL /places?embed=checkins,merchant then they would see checkin and
merchant data in the response inside the book resource:



Data Relationships 57

1 {

2 "data": [

3 {

4 "id": 2,

5 "name": "Videology",

6 "lat": 40.713857,

7 "lon": -73.961936,

8 "created_at": "2013-04-02",

9 "checkins" : [

10 // ...

11 ],

12 "merchant" : {

13 // ...

14 }

15 },

16 {

17 "id": 1,

18 "name": "Barcade",

19 "lat": 40.712017,

20 "lon": -73.950995,

21 "created_at": "2012-09-23",

22 "checkins" : [

23 // ...

24 ],

25 "merchant" : {

26 // ...

27 }

28 }

29 ]

30 }

Some systems (like Facebook, or any API using Fractal) will let you nest those embeds with dot notation:

E.g: /places?embed=checkins,merchant,current_opp.images

Embedding with Fractal

Picking back up from Chapter 6, your transformer at this point is mainly just giving you a method to handle
array conversion from your data source to a simple array. Fractal can however embed resources and collections
too. Going back to the book example in Chapter 6, the BookTransformermight contain an optional embed for
an author.



Data Relationships 58

1 <?php namespace App\Transformer;

2

3 use Book;

4 use League\Fractal\TransformerAbstract;

5

6 class BookTransformer extends TransformerAbstract

7 {

8 /**

9 * List of resources possible to embed via this transformer

10 *

11 * @var array

12 */

13 protected $availableEmbeds = [

14 'author'

15 ];

16

17 /**

18 * Turn this item object into a generic array

19 *

20 * @return array

21 */

22 public function transform(Book $book)

23 {

24 return [

25 'id' => (int) $book->id,

26 'title' => $book->title,

27 'year' => $book->yr,

28 ];

29 }

30

31 /**

32 * Embed Author

33 *

34 * @return League\Fractal\ItemResource

35 */

36 public function embedAuthor(Book $book)

37 {

38 $author = $book->author;

39

40 return $this->item($author, new AuthorTransformer);

41 }

42 }

This example happens to be using the lazy-loading functionality of an ORM for $book->author, but there
is no reason that eager-loading could not also be used by inspecting the $_GET['embed'] list of requested



Data Relationships 59

scopes. Something like this can easily go in your controller constructor, somewhere in the base controller or…
something:

1 $requestedEmbeds = Input::get('embed');

2

3 // Left is the embed names, right is relationship names.

4 // avoids exposing relationships and whatnot directly

5 $possibleRelationships = [

6 'publisher' => 'publisher',

7 'author' => 'user',

8 ];

9

10 // Check for potential ORM relationships, and convert from generic "embed" names

11 $eagerLoad = array_values(array_intersect($possibleRelationships, $requestedEmbeds));

12

13 $books = Book::with($eagerLoad)->get();

Being a RESTful Rebel

I read a blog article by Ian Bentley³ suggesting that this approach is not entirely RESTful. It points to a Roy
Fielding quote:

The central feature that distinguishes the REST architectural style from other network-based
styles is its emphasis on a uniform interface between components (Figure 5-6). By applying
the software engineering principle of generality to the component interface, the overall system
architecture is simplified and the visibility of interactions is improved. Roy Fielding⁴

All of these solutions are - according to somebody - “wrong”. There are technical pros and cons and what I
refer to as “moral” issues, but those moral issues are just down to how technically RESTful you care about
being. The technical benefits that optional embedded relationships provide are so beneficial I do not care
about crossing Roy and his RESTful spec to do it.

Make your own choices. Facebook, Twitter and most popular “RESTful API’s” fundamentally ignore parts of
(or dump all over the entirety of) the RESTful spec, so respecting everything else and popping your toe over
the line here a little would not be the biggest travesty for your API.

³http://idbentley.com/blog/2013/03/14/should-restful-apis-include-relationships/
⁴http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1

http://idbentley.com/blog/2013/03/14/should-restful-apis-include-relationships/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1
http://idbentley.com/blog/2013/03/14/should-restful-apis-include-relationships/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1


8 Debugging

8.1 Coming Soon

This chapter will hopefully be with you by January 5th, 2014.


	Table of Contents
	Introduction
	Sample Code
	Useful Database Seeding
	Introduction to Database Seeding
	Building Seeders
	That's about it
	Secondary Data
	When to run this

	Planning and Creating Endpoints
	Functional Requirements
	Endpoint Theory
	Planning Endpoints

	Input and Output Theory
	Requests
	Responses
	Supporting Formats
	Content Structure

	Status Codes, Errors and Messages
	HTTP Status Codes
	Error Codes and Error Messages
	Common Pitfalls

	Endpoint Testing
	Concepts & Tools
	Setup
	Initialise
	Features
	Scenarios
	Prepping Behat
	Running Behat

	Outputting Data
	The Direct Approach
	Transformations with Fractal
	Hiding Schema Updates
	Outputting Errors
	Testing this Output
	Homework

	Data Relationships
	Sub-Resources
	Foreign Key Arrays
	Compound Documents (a.k.a Side-Loading)
	Embedded Documents (a.k.a Nesting)

	Debugging
	Coming Soon


